Package: RTutor (via r-universe)

August 26, 2024
Type Package

Title Interactive R problem sets with automatic testing of solutions
and automatic hints

Version 2020.11.25

Date 2020-11-25

Author Sebastian Kranz

Maintainer Sebastian Kranz <sebastian.kranz@uni-ulm.de>

Description Interactive R problem sets with automatic testing of
solutions and automatic hints

License Programm code: GPL >= 2.0 Contributed problem sets: Creative
Commons (CY)

Depends shinyEvents,markdown,whisker, stringr, stringtools,
data.table, tibble, dplyr, shiny (>= 0.11.1), dplyrExtras,
shinyAce, shinyBS (>= 0.61), hwriter, restorepoint, RCurl,
knitr, jsonlite, DT, memoise, yaml, rmarkdown

Suggests digest

RoxygenNote 7.1.1

Repository https://skranz.r-universe.dev

RemoteUrl https://github.com/skranz/RTutor

RemoteRef master

RemoteSha 4502cab94cb9233e4b11aab42b29f6d2b0576113

Contents

addfailure e
add.SUCCESS e e
add.warning L. e e e
auto.hint e
auto.hintelse
awards L L L e e e e e e
check.assign

Index

Contents

check.assign.with.multiple.sol 6
check.call e 7
check.col e 8
checkeXpr L e e 9
check.file.exists L 10
check.function. 10
check.problem.set L 11
checkiregression L e 12
check.variable 13
CTEALE.PS « « v v o v v e 14
display e 17
GELPS o ot e e e e e e e 17
hint e 17
hint.else e e e e e 17
hint.else.active e e e e e e e e 18
hintforassign 18
hint.for.call e e 19
hintforcompute 19
hintforfunction 20
hint.stud.assign 20
hintstud.call 0 oL 20
hintstud.funo oL 21
holds.true 21
make.hintreport L L e e e 22
make.submission e 22
name.rmd.chunkso 23
read.yaml e e e 23
rtutor.app.skelo L e 24
rtutor.package.skel L. L 25
rtutor.skel.show.opts.string L. 26
TUILPS « t o v e v e e e e e e e e e e e e e e e e 26
] 27
Show.ps . . . e 28
STALS . . . L e e e 30
testHO e e 30
testHO.rejected L 31
TUE . . . o o e e e e e e e 33
with.random.seed e 33
34

add.failure

add.failure Used inside tests: adds a failure to an exercise

Description

Used inside tests: adds a failure to an exercise

Usage
add.failure(message, ..., add.new.line = TRUE, ps = get.ps())
Arguments
message a longer description shown to the user
variables that will be rendered into messages that have whiskers
add. success Used inside tests: adds a sucess message
Description

Used inside tests: adds a sucess message

Usage
add.success(message, ..., ps = get.ps())
Arguments
message a longer description shown to the user
variables that will be rendered into messages that have whiskers
add.warning Used inside tests: adds a warning
Description

Used inside tests: adds a warning

Usage

add.warning(message, ..., ps = get.ps())
Arguments

message a longer description shown to the user

variables that will be rendered into messages that have whiskers

4 awards

auto.hint This is just a place holder in a hint block

Description

Only used inside a hint block.

Usage

auto.hint()

Details

It says that the automatic hint shall be shown. This makes sense if you want to show the automatic
hint in addition to a custom hint. Also see auto_hint_else()

auto.hint.else This is just a place holder in a hint block

Description

Only used inside a hint block.

Usage

auto.hint.else()

Details

It says that the automatic hint should be shown unless some hint with hint.stud.call has been shown
(or ps$shown.custom.hints has been manually assigned a value above 0.)

awards Show all your awards

Description

Show all your awards

Usage

awards(ups = get.ups(), as.html = FALSE, details = TRUE, ps = get.ps())

check.assign 5

check.assign Checks an assignment to a variable

Description

By default a solution is considered correct if the assignment yields the same value than the sample
solution, or has the same rhs (e.g. a call runif(1,0,1)), even if the value differs.

Usage

check.assign(
call,
check.arg.by.value = TRUE,
allow.extra.arg = FALSE,
ignore.arg = NULL,
success.message = NULL,
failure.message = NULL,

no.command. failure.message = "You have not yet included correctly, all required R commands in your co
ok.if.same.val = TRUE,
call.object = NULL,

s3.method = NULL,

ps = get.ps(),

stud.env = ps$stud.env,

part = ps$part,

stud.expr.li = ps$stud.expr.li,
verbose = FALSE,
only.check.assign.exists = FALSE,
noeval = isTRUE(ps$noeval),
other.sols = NULL,

check.cols = NULL,

sort.cols = NULL,

Arguments

call the correct assignment that shall be checked (not a quoted call)
allow.extra.arg
if TRUE (not default) the student is allowed to supply additional arguments
to the call that were not in the solution. Useful, e.g. if the student shall plot
something and is allowed to customize her plot with additional arguments.

ignore.arg a vector of argument names that will be ignored when checking correctness

ok.if.same.val if TRUE (default) the call will be considered as correct, if it yields the same
resulting value as the solution, even if its arguments differ.

call.object alternatively to call a quoted call (call object)

check.assign. with.multiple.sol

only.check.assign.exists

other.sols

check.cols

sort.cols

if TRUE (default = FALSE) only check if an assignemnt to the lhs variable
exists no matter whether the assignment is correct. May be sensible if there
are additional tests specified afterwards that check some characteristics of the
assigned variable.

a list of quoted assignments, e.g. 1list(quote(x<-5), quote(x<-10@)) of other
solutions that are also correct.

only relevant if a data frame (or tibble) is computed. An optional character
vector of column names. If provided only check whether those columns are
correctly computed but ignore other columns. Only works if compare.vals =
TRUE (default).

only relevant if a data frame (or tibble) is computed. An optional character
vector of column names. If provided sort the sample solution and student’s
solution by these columns before comparing. This means that also solutions that
are originally sorted in a different fashion are accepted. Useful in combination
with check. cols.

check.assign.with.multiple.sol

Checks an assignment to a variable with up to 5 possibly correct solu-
tions

Description

Can be called in a #< test block for a custom test.

Usage

check.assign.with.multiple.sol(

sol1l,
sol2,
sol3,
sol4,
sol5,

’

sol.list = list()

Arguments

sol1

An assignment that needs to be checked, e.g. x<-5. Similar for sol2, sol3, sol4,
sol5.

check.call 7

Examples

Assume the task is that x shall be a number
below 11 and divisible by 5

check.assign.with.multiple.sol(x<-5, x<-10)

check.call Checks whether the user makes a particular function call in his code
or call a particular R statement

Description

Checks whether the user makes a particular function call in his code or call a particular R statement

Usage

check.call(
call,
check.arg.by.value = TRUE,
allow.extra.arg = FALSE,
ignore.arg = NULL,
success.message = NULL,
failure.message = NULL,
no.command. failure.message = NULL,
ok.if.same.val = NA,
s3.method = NULL,
ps = get.ps(),
stud.env = ps$stud.env,
part = ps$part,
stud.expr.li = ps$stud.expr.li,
verbose = FALSE,
noeval = isTRUE(ps$noeval),
hint.on.fail = isTRUE(psrpshint.on.fail),
check.cols = NULL,

sort.cols = NULL,
is.ggplot = FALSE,
)
Arguments
call the correct function call that shall be checked (not a quoted call)

check.arg.by.value
if TRUE (default) check whether students arguments have the same value than
in given call, even if their unevaluted representation looks different

8 check.col

allow.extra.arg
if TRUE (not default) the student is allowed to supply additional arguments
to the call that were not in the solution. Useful, e.g. if the student shall plot
something and is allowed to customize her plot with additional arguments.

ignore.arg a vector of argument names that will be ignored when checking correctness

ok.if.same.val if TRUE (default) the call will be considered as correct, if it yields the same
resulting value as the solution, even if its arguments differ.

hint.on.fail Shall automatically be a hint shown if a test fails. By default FALSE, i.e. student
has to type hint(). Yet, default can be overwritten in call to create.ps.

check.cols only relevant if a data frame (or tibble) is computed. An optional character
vector of column names. If provided only check whether those columns are
correctly computed but ignore other columns. Only works if compare.vals =
TRUE (default).

sort.cols only relevant if a data frame (or tibble) is computed. An optional character
vector of column names. If provided sort the sample solution and student’s
solution by these columns before comparing. This means that also solutions that
are originally sorted in a different fashion are accepted. Useful in combination
with check. cols.

check.col Test: Compare the column col of the matrix or data.frame df with
either the values from the given solutions or with the result of an ex-
pression that is evaluated in the students solution

Description

Test: Compare the column col of the matrix or data.frame df with either the values from the given
solutions or with the result of an expression that is evaluated in the students solution

Usage

check.col(
df,
col,
expr = NULL,
class.df = c("data.frame”, "data.table"”, "matrix"),
check.all = FALSE,
exists = check.all,
length = check.all,
class = check.all,
values = check.all,
tol = .Machine$double.eps”@.5,
failure.exists = "{{df}} does not have a column {{col}}.",

failure.length = "{{df}} has {{length_stud}} rows but it shall have {{length_sol}} rows.",

check.expr 9

failure.class = "Column {{col}} of {{df}} has a wrong class. It should be {{class_sol}} but it is {{cl
failure.values = "Column {{col}} of {{df}} has wrong values.",

failure.message.add = NULL,

success.message = "Great, column {{col}} of {{df}} has correct {{tests}}.",

part = NULL,

ps = get.psQ),

stud.env = ps$stud.env,

verbose = FALSE,

unsubst.expr = NULL,

str.expr = NULL

)
Arguments
df name of the data frame or matrix
col name of the column
expr the test expression that will be evaluated
exists shall existence be checked (similar length, class, values)

failure.exists a message that is shown if the variable does not exists (similar the other fail-
ure.??? variables)

failure.message.add
a text that will be added to all failure messages

check.expr Test: Compare the expression check.expr evaluated in the student’s
environment with the solution correct.expr

Description

Test: Compare the expression check.expr evaluated in the student’s environment with the solution
correct.expr

Usage

check. expr(
check.expr,
correct.expr,
failure.message = "{{check_expr}} has the wrong values!”,
success.message = "Great, {{check_expr}} seems correct.”,
part = NULL,
ps = get.ps(Q),
stud.env = ps$stud.env,
verbose = FALSE,
unsubst.check.expr = NULL,
unsubst.correct.expr = NULL,
str.check.expr = NULL,

10 check.function

str.correct.expr = NULL,
tol = .Machine$double.eps”*0.5

)

Arguments

check.expr the expression to be checked

correct.expr the correct expression

vars a variable name or vector of variable names

exists shall existence be checked (similar length, class, values)

failure.exists a message that is shown if the variable does not exists (similar the other fail-
ure.??? variables)

failure.message.add
a text that will be added to all failure messages

check.file.exists Check whether a given file exists

Description

Check whether a given file exists

Usage

check.file.exists(
file,
failure.message = paste@("Sorry, but I cannot find the file \"", file,
"\" in your current working directory."”),

success.message = paste@("Great, I have found the file \"", file, "\"!"),
ps = get.ps(),
part = NULL,
)
check. function Checks a function written by the student
Description

Checks a function written by the student

check.problem.set

Usage

check. function(
code,

L

11

check.args = TRUE,
check.defaults = FALSE,
check.args.order = TRUE,
allow.extra.arg = TRUE,
ps = get.ps(Q),

stud.env = ps$stud.env,
verbose = FALSE,

part = NULL
)
Arguments
code
check.args

check.defaults

code of the form fun_name = function(x,y) #body of function. It is important
to wrap the code in and to assign the function name with = (don’t use <-). See
example below.

you can add several test calls to the function. It will be checked whether the
users’ function returns the same values in those calls than the function in the
solution. You can also have a code block wrapped in that ends with a call to
the function. In this way you can e.g. specify a random seeds before calling the
function.

if TRUE check the arguments of the user function. If a character vector only
check the given arguments.

TRUE = check the default values of the arguments of the user function. If a
character vector only check the default values of the given arguments.

check.args.order

allow.extra.arg

if TRUE make sure that the checked arguments appear in the same order in the
user function than in the solution

if TRUE the user function can have additional arguments (at the end) that are
not in the solution

check.problem.set

Checks a student problem set

Description

The command will

be put at the top of a student’s problem set. It checks all exercises when the

problem set is sourced. If something is wrong, an error is thrown and no more commands will be

sourced.

12 check.regression

Usage

check.problem.set(
ps.name,
stud.path,
stud.short.file,
reset = FALSE,
set.warning.1 = TRUE,
user.name = "GUEST",
do.check = interactive(),
verbose = FALSE,
catch.errors = TRUE,
from.knitr = isTRUE(getOption("knitr.in.progress”)) | !interactive(),
use.null.device = TRUE,
just.init = FALSE,

stud.code = NULL
)
check.regression Check whether an object from a call to Im, glm or some other regres-
sion function is correct
Description

Check whether an object from a call to Im, glm or some other regression function is correct

Usage

check.regression(

var,
str.expr,
part = NULL,

ps = get.ps(),

stud.env = ps$stud.env,

verbose = FALSE,

failure.message = paste@("Hmm... your regression ", var, " seems incorrect.”),
success.message = paste@("Great, your regression ", var, " looks correct.”),
tol = 1e-10

check.variable 13

check.variable Test: Check whether a variable is equal to a specified expression

Description

Test: Check whether a variable is equal to a specified expression

Usage

check.variable(
var,
expr,
length = check.all,
dim = check.all,
class = check.all,
values = check.all,
check.all = TRUE,
tol = .Machine$double.eps*0.5,
failure.exists = "You have not yet generated the variable {{var}}.”,

failure.length = "Your variable {{var}} has length {{length_stud}} but it shall have length {{length_
failure.dim = "Your variable {{var}} has the wrong dimensions (rows x columns).”,

failure.class = "Your variable {{var}} has a wrong class. It should be {{class_sol}} but it is {{class

failure.values = "Your variable {{var}} has wrong values.",
success.message = "Great, {{var}} has correct {{tests}}.",
ps = get.ps(),

stud.env = ps$stud.env,
verbose = FALSE,

part = NULL
)
Arguments
var a the variable name as string
expr an expression that will be evaluated in the student environment and returns the
variable
length shall length be checked (similar dim, class, values)

failure.length a message that is shown if the variable does not exists (similar the other fail-
ure.??? variables)

failure.message.add
a text that will be added to all failure messages

14 create.ps

create.ps Generate a problem set from a solution file

Description

Generates .rps file, and .rmd files for empty ps , sample solution and output solution

Usage

create.ps(
sol.file,
ps.name = NULL,
user.name = "ENTER A USER NAME HERE",
sol.user.name = "Jane Doe",
dir = getwd(),

nn

header = R

footer = "",

libs = NULL,

stop.when.finished = FALSE,

extra.code.file = NULL,

var.txt.file = NULL,

rps.has.sol = TRUE,

fragment.only = TRUE,

add.enter.code.here = FALSE,

add.shiny = TRUE,

make.rmd = TRUE,

addons = NULL,

whitelist.report = FALSE,

wl = rtutor.default.whitelist(),

use.memoise = FALSE,

memoise.funs = rtutor.default.memoise.funs(),

precomp = FALSE,

preknit = FALSE,

force.noeval = FALSE,

html.data.frame = TRUE,

table.max.rows = 25,

round.digits = 8

signif.digits =

knit.print.opts
table.max.rows
signif.digits),

knitr.opts.chunk = list(dev = "svg"),

e.points = 1,

min.chunk.points = 0,

chunk.points = 0,

keep.fill.in.output.sol = TRUE,

hint.on.fail = FALSE,

’

make.knit.print.opts(html.data.frame = html.data.frame,
table.max.rows, round.digits = round.digits, signif.digits =

I oo -

create.ps

15

empty.task.txt = "# Enter your code here.",

placeholder =

n n

—_

short.first.chunk = TRUE,
stop.if.visual.mode.garbling = TRUE,
bolden.part.counters = FALSE

Arguments
sol.file
ps.name
user.name
sol.user.name
dir
libs
extra.code.file

var.txt.file

rps.has.sol

add.shiny

make. rmd

use.memoise

memoise. funs

precomp

preknit

force.noeval

html.data.frame

table.max.rows

file name of the _sol.rmd file that specifies the problem set
the name of the problem set

can pick a default user.name (will typically not be set)

the user.name set in the sample solution

the directory in which all files are found and wil be saved to

character vector with names of libraries that will be used by the problem set

the name of an r file that contains own functions that will be accessible in the
problme set

name of the file that contains variable descriptions (see thee vignette for an ex-
planation of the file format)

shall the sample solution be stored in the .rps file. Set this option to FALSE if
you use problem sets in courses and don’t want to assess students the sample
solution easily

shall we compile the ps so that it can be shown as a web-based shiny app. Default
is TRUE. Set FALSE if not needed to speed up compilation

Shall a Rmd problem set file and sample solution file be generated. Default is
TRUE You can set to FALSE if you only want a shiny version to slightly speed
up compilation and avoid file clutter.

shall functions like read.csv be memoised? Data sets then only have to be loaded
once. This can make problem sets run faster. Debugging may be more compli-
cated, however.

character vector of function names that will be memoised when use.memoise =
TRUE. By default a list of functions that load data from a file.

shall chunk environments be computed from sample solution when problem set
is generated? Default = FALSE

shall sample solution of chunks be knitted when problem set is generated. De-
fault = FALSE

shall problem set only be shown in noeval mode? (Used as a security against
accidentially forgetting to set noeval=TRUE in show.ps, when showing the prob-
lem set in a web app.)

shall data frames in shiny-based problem set be shown as html? Default is TRUE.

How many rows of a printed data frame shall be shown? Default is 25.

16

create.ps

round.digits Digits for rounding of shown data frames.

signif.digits Significant digits for shown data frames.
knitr.opts.chunk
A list of global knitr chunk options for shiny problem set, see https://yihui.org/knitr/options/.

By default 1ist (dev="svg"). Has the same effect as if you would call knitr: :opts_chunk
with those options before you call show.ps.

e.points how many points does the user get per required expression in a chunk (expres-
sions in a task do not count). Default=1

min.chunk.points
minimal points for checking a chunk even if no none-task expression has to be
entered. By default=0.5. I feel there may be a higher motivation to continue a
problem set if there are may be some free point chunks farther below. Also it
feels nice to get points, even if it is just for pressing the check button.

chunk.points you may also specify fixed points given for solving a chunk that will be added
to the points per expression. Default=0

keep.fill.in.output.sol
if TRUE (default) the original code with placeholders of a fill in block will be
shown in the output solution Rmd file as a comment before the solution. If
FALSE only the solution will be shown.

hint.on.fail shall by default a hint be shown already if the correctness test fails. If FALSE
(default) hints are only shown if the user types hint() or, in the shiny version,
presses the hint button.

empty.task.txt A textthat will be shown in chunks without any task block. Defaultis empty. task.txt
= "# Enter your code here."”

placeholder The string you use as placeholder in fill_in blocks. By default "___". This
should be a pattern that you don’t use in your normal code. If a user’s input
cannot be parsed, we replace this pattern by an internal represenataion that is

valid R syntax.
short.first.chunk
If TRUE (default) the first chunk is more compact and only contains the user name

line. Otherwise it also contains the calls to check.problem.set which would allow
to check the problem set also without the RStudio Addin.

stop.if.visual.mode.garbling
If TRUE (default) stops the creation of the problem set and shows an informative
error message if it looks as if the solution file was shown in the new visual mode
for markdown files. The new visual mode markdown feature of RStudio is cool
for solving RTutor problem sets. But you should never view the solution file
from which you generate the problem set in visual mode, since it rewrites the
code in an unparseable way.

bolden.part.counters
if TRUE change lines that start with a) or b) etc to **a)** and **b)**. This

turns-off auto enumeration and makes problem sets look nicer in visual mark-
down mode.

display 17

display Displays the given text

Description

Displays the given text

Usage
display(..., collapse = "\n", sep = "", start.char = "\n", end.char = "\n")
get.ps Get the current problem set
Description

Either a globally stored problem set or if RTutor runs as a web-app the associated problem set with
the current shiny session

Usage
get.ps(force.global = FALSE)

hint Shows a hint for the current problem.

Description

Shows a hint for the current problem.

Usage
hint(..., ps = get.ps())
hint.else Show a hint only if no hint.stud.call or hint.stud.assign was triggered.
Description

It says that the automatic hint should be shown unless some hint with hint.stud.call has been shown
(or ps$shown.custom.hints has been manually assigned a value above 0.)

Usage
hint.else(msg, add.line.breaks = TRUE, ps = get.ps())

18 hint.for.assign

hint.else.active Get or set whether hint.else or auto.hint.else would be triggered.

Description

If a hint.stud.call or hint.stud.assign is shown then a hint.else or auto.hint.else would not be trig-
gered. This function returns TRUE if hint.else would still be triggered or otherwise FALSE.

Usage

hint.else.active(activate = NULL, ps = get.ps())

Details

If you set the argument activate you can change this status.

hint.for.assign Default hint for an assignment

Description

Default hint for an assignment

Usage

hint.for.assign(
expr,
ps = get.psQ),
env = ps$stud.env,
stud.expr.li = ps$stud.expr.li,
part = ps$part,
s3.method = NULL,
expr.object = NULL,
start.char = "\n",
end.char = "\n",

hint.for.call

19

hint.for.call Default hint for a call

Description

Default hint for a call

Usage

hint.for.call(

call,

ps = get.ps(),

env = ps$stud.env,
stud.expr.li = ps$stud.expr.li,
part = ps$part,

from.assign = !is.null(lhs),
lhs = NULL,

call.obj = NULL,

s3.method = NULL,

start.char = "\n",

end.char = "\n"

hint.for.compute

Default hint for a compute block

Description

Default hint for a compute block

Usage

hint.for.compute(
expr,
hints.txt = NULL,
var = "",

ps = get.psQ),

env = ps$stud.env,

stud.expr.li = ps$stud.expr.li,
part = ps$part,

start.char = "\n",

end.char = "\n",

20 hint.stud.call

hint.for.function Default hint for a function

Description

Default hint for a function

Usage
hint.for.function(code, ..., ps = get.ps())
hint.stud.assign Show the hint if the student made the specified wrong assignment
Description

Show the hint if the student made the specified wrong assignment

Usage

hint.stud.assign(var, call, msg, ps = get.ps(), env = parent.frame())

Arguments
var name of the to be assigned variable as character
call an unquoted call that we check whether the student makes it
msg a string that shall be shown as hint if the student made the call in his code
hint.stud.call Show the hint if the student made the specified wrong call
Description

Show the hint if the student made the specified wrong call

Usage

hint.stud.call(
call,
msg = "",
ps = get.psQ),
env = parent.frame(),
gcall,
var = NULL

hint.stud.fun 21

Arguments
call an unquoted call that we check whether the student makes it
msg a string that shall be shown as hint if the student made the call in his code
hint.stud.fun Show the hint if the student calls a specific function
Description

Show the hint message if the student has called a certain function (not nested in another function)
somewhere in the chunk. If you also want to consider the call arguments use hint.stud.call or
hint.stud.assign instead.

Usage

hint.stud.fun(fun.name, msg, ps = get.ps(), env = parent.frame())

Arguments
fun.name the function name as string.
msg a string that shall be shown as hint if the student made the call in his code
holds. true To be used in a test block
Description

Checks whether a certain condition on the stud’s generated variables hold true

Usage
holds. true(
cond,
short.message = failure.message,
failure.message = "Failure in holds.true”,
success.message = "Great, the condition {{cond}} holds true in your solution!”,
part = NULL,

ps = get.ps(),
stud.env = ps$stud.env,
cond.str = NULL,

22 make.submission

Arguments

cond The condition to be checked
failure.message

The failure message to be shown if the text fails.
success.message

The success message

make.hint.report Helper function when developing problem sets

Description

Tries to check all chunks with given solution and shows the corresponding hint.

Usage
make.hint.report(ps.name, out.file = paste@(ps.name, "_hint_report.Rmd"))
make.submission Grade your problem set and make submission file
Description

The command will rerun and check all chunks of your problem set and grade it, i.e. it determines
which tests are passed or not. The results are stored in a submission file: psname___username.sub,
which will be part of the submitted solution. The function works similarly than check.problem.set,
but makes sure that all exercies are checked.

Usage

make . submission(
ps = get.ps(Q),
user.name = get.user.name(),
ps.name = ps$name,
stud.path = ps$stud.path,
stud.short.file = ps$stud.short.file,
add.log = TRUE,
reset = TRUE,
set.warning.1 = TRUE,
verbose = FALSE,
catch.errors = TRUE,
from.knitr = !interactive(),
use.null.device = TRUE,
ups.dir = ps$ups.dir

name.rmd.chunks

23

name.rmd. chunks Set default names for the chunks of problem set rmd files

Description

Set default names for the chunks of problem set rmd files

Usage

name. rmd. chunks(
rmd.file = NULL,
txt = readlLines(rmd.file, warn = FALSE),
only.empty.chunks = FALSE,
keep.options = TRUE,
valid.file.name = FALSE

)
Arguments
rmd.file file name
txt alternative the code as txt file

only.empy.chunks

if FALSE (default) name all chunks. Otherwise only empty chunks are over-

written
keep.option if TRUE (default) don’t change chunk options; otherwise clear all chunk options
(dangerous)
read.yaml Reads a yaml file and returns as a list

Description

Reads a yaml file and returns as a list

Usage

read.yaml(
file = NULL,
verbose = FALSE,
keep.quotes = TRUE,
quote.char = "__QUOTE__",
text = NULL,
catch.error = TRUE,
check.by.row = FALSE,
space.after.colon = FALSE,
utf8 = TRUE

24 rtutor.app.skel

rtutor.app.skel Generate a skeleton for a shinyapps.io app of a problem set

Description

Generate a skeleton for a shinyapps.io app of a problem set

Usage
rtutor.app.skel(
ps.name,
app.name = ps.name,
app.dir,

rps.app = !is.null(rps.dir),

pkg.name = NULL,

rps.file = paste@(ps.name, ".rps"),

rps.dir = NULL,

overwrite = FALSE,

github.user = "GITHUB_USERNAME",

rtutor.fork = "skranz",

libs = NULL,

ps.show.opts = NULL,

direct.execution = FALSE,

shinyapps.account.info = list(name = "<SHINYAPPS_USERNAME>" 6 token = "<TOKEN>",
secret = "<SECRET>"),

Arguments
ps.name Name of the problem set
app.name Name of your app. Should have no white spaces or special characters
app.dir Your local directory to which you want to deploy your app files
rps.app logical. If ‘TRUE create an app based on an .rps file. Otherwise create the app
based on a problem set package that is hosted on Github.
pkg.name If you create the app from a package this is the name of your package.
rps.file The name of your rps file without directory if you create the app from a .rps file
rps.dir the folder of your rps.file
github.user If you create the app from a package this is the name of your Github user name.

rtutor.fork Note that shinyapps.io only works with R packages directly installed from Github
or CRAN. It is therefore not possible to locally change RTutor and use the
adapted version for your own problemsets. This option however allows you
to refer to your fork on github. Default is the main package under skranz.

rtutor.package.skel 25

ps.show.opts ps.show() arguments which are added to the generated ps.show. Has to be given
as anamed list, e.g. ‘ps.show.opts=list(show.solution.btn=FALSE)* if one wants
to create an app which does not show the solution button. By default only the
necessary options are set. If those are provided, they are overwritten. This way,
one can for example set the user.name to something different than Guest.
direct.execution
If TRUE the generated file deployapp.R is directly executably in the sense that
the safety checks within the file are off (i.e. the saving ‘if* clauses are set to
TRUE). Use with care! Default is ‘FALSE‘.
shinyapps.account.info
Expects a List with the account info according to http://shiny.rstudio.com/articles/shinyapps.html
. Default is list(name="<SHIN YAPPS_USERNAME>’, token="<TOKEN>’ secret="<SECRET>"),
i.e. the example from that site.

rtutor.package.skel Generate a package skeleton for a shiny based RTutor problem set that
shall be deployed as a package

Description

Generate a package skeleton for a shiny based RTutor problem set that shall be deployed as a
package

Usage

rtutor.package.skel(
sol.file,
ps.name,
pkg.name,
pkg.parent.dir,
author = "AUTHOR_NAME",
github.user = "GITHUB_USERNAME",
date = format(Sys.time(), "%Y-%d-%m"),
source.dir = getwd(),
rps.file = paste@(ps.name, ".rps"),
libs = NULL,
extra.code.file = NULL,
var.txt.file = NULL,
ps.file = paste@(ps.name, ".Rmd"),
overwrite = FALSE,
overwrite.ps = TRUE,

26 run.ps

rtutor.skel.show.opts.string
Intermediary Function helping to build the ps.show() Options string

Description

Expects two lists with arguments.

Usage

rtutor.skel.show.opts.string(mandatory, optional)

Arguments
mandatory Are always set but may be overwritten by optional
optional Are intended to be set by the user. May overwrite mandatory ones if set ex-
plicitely.
run.ps Run a problem set from a package in the browser
Description

Only works if a package for the problem set is loaded. For problem sets stored in a local .rps file,
use show.ps() instead

Usage

run.ps(
user.name,
ps.name = info$ps[1],
dir = getwd(),
package = NULL,
auto.save.code = FALSE,
clear.user = FALSE,
run.solved = FALSE,
sample.solution = FALSE,
show.solution.btn = NA,
launch.browser = TRUE,
info = get.package.info(package),
deploy.local = !make.web.app,
make.web.app = FALSE,
pkg.dir = path.package(info$package),
rps.dir = find.pkg.rps.dir(ps.name, pkg.dir),
material.dir = find.pkg.material.dir(ps.name, pkg.dir),

sc 27

Arguments
user.name Your user name
ps.name Name of the problem set. By default the first problem set name of the loaded
RTutor problem set package.
dir your working directory for the problem set
package name of the package that contains your problem set. Is automatically chosen a

(single) package with an RTutor problem set is loaded.

auto.save.code If TRUE all entered code will be automatically saved for the user. If FALSE
(default) no entered code is saved. The user statistics (how many chunks are
solved) are still saved, however.

clear.user If TRUE all previously saved data for the user is removed if the problem set
starts. Can be useful for developlmen or for resetting things.

run.solved If TRUE and also sample.soulution=TRUE all previously solved chunks will be
run when the problem set is newly shown. This can be very time consuming. I
would suggest in most cases to keep the default run.solved=FALSE.

sample.solution
If TRUE the sample solution is shown in all chunks. Can be useful when devel-
oping a problem set. Note that one can create a problem set such that the sample
solution is not available, e.g. if one wants to avoid that students just look at the
sample solution.

show.solution.btn
If TRUE add a button to each chunk to show the sample solution. Note that one
can create a problem set such that the sample solution is never available.

launch.browser if TRUE (default) show the problem set in the browser. Otherwise it is shown in
the RStudio viewer pane

pkg.dir the package directory under which problem set files are searched under pkg.dir/ps/ps.name/.
Will be set by default to currently loaded RTutorProblemSet package

rps.dir directory of rps.files. Will be set to default for current package

material.dir directory of additional problem set files. Will be set to default for current pack-
age

additional arguments of show.ps

sc Like pasteQ but returns an empty vector if some string is empty

Description

Like paste(but returns an empty vector if some string is empty

Usage
sc(..., sep = "", collapse = NULL)

28 show.ps

show.ps Run a shiny based problem set in the browser

Description

Main function to locally run a shiny based problem set in your browser. There are a lot of parameters
that control the behavior of the problem set. Only the main parameters are explained below.

Usage

show. ps(

ps.name,

user.name = "default_user”,

auto.save.code = FALSE,

clear.user = FALSE,

run.solved = FALSE,

sample.solution = FALSE,

prev.chunks.sample.solution = show.solution.btn,

launch.browser = TRUE,

catch.errors = TRUE,

dir = getwd(),

rps.dir = dir,

offline = !can.connect.to.MathJax(),

left.margin = 2,

right.margin = 2,

is.solved,

make.web.app = FALSE,

make.session.ps = make.web.app,

save.nothing = FALSE,

show.revert.btn = TRUE,

show.solution.btn = NA,

show.data.exp = TRUE,

show.download.rmarkdown = TRUE,

disable.graphics.dev = TRUE,

check.whitelist = !is.null(wl),

wl = NULL,

verbose = FALSE,

html.data.frame = TRUE,

table.max.rows = 25,

round.digits = 8

signif.digits = 8,

knit.print.opts = make.knit.print.opts(html.data.frame = html.data.frame,
table.max.rows = table.max.rows, round.digits = round.digits, signif.digits
signif.digits, print.data.frame.fun = print.data.frame.fun, print.matrix.fun
print.matrix.fun),

print.data.frame.fun = NULL,

print.matrix.fun = NULL,

I oo ~
1]

show.ps

29

precomp = FALSE,
noeval = FALSE,

need.login =
login.dir =

FALSE,
paste@(dir, "/login"),

show.points = TRUE,

stop.app.if.window.closes =

Imake.session.ps,

sav.file = paste@(user.name, "_", ps.name, ".sav"),
load.sav = FALSE,
show.save.btn = FALSE,
import.rmd = FALSE,
rmd.file = paste@(ps.name, "_", user.name, "_export.rmd"),
)
Arguments
ps.name Name of the problem set
user.name A user name. Should be a valid variable name

auto.save.code

clear.user

run.solved

sample.solution

If TRUE all entered code will be automatically saved for the user. If FALSE
(default) no entered code is saved. The user statistics (how many chunks are
solved) are still saved, however.

If TRUE all previously saved data for the user is removed if the problem set
starts. Can be useful for development or for resetting things.

If TRUE and also sample.solution=TRUE all previously solved chunks will be
run when the problem set is newly shown. This can be very time consuming. I
would suggest in most cases to keep the default run.solved=FALSE.

If TRUE the sample solution is shown in all chunks. Can be useful when devel-
oping a problem set. Note that one can create a problem set such that the sample
solution is not available, e.g. if one wants to avoid that students just look at the
sample solution.

prev.chunks.sample.solution

launch.browser
catch.errors
dir

rps.dir
offline

If TRUE and a user edits a chunk without having checked all previous chunks
then previous chunks will be automatically be checked with the sample solution.
If FALSE previous chunks will be checked with the user’s entered solutions. Has
by default the same value as show.solution.btn.

if TRUE (default) show the problem set in the browser. Otherwise it is shown in
the RStudio viewer pane

by default TRUE only set FALSE for debugging purposes in order to get a more
informative traceback()

your working directory for the problem set, by default getwd()

directory of rps.files by default equal to dir

(FALSE or TRUE) Do you have no internet connection. By default it is checked
whether RTutor can connect to the MathJax server. If you have no internet
connection, you cannot render mathematic formulas. If RTutor wrongly thinks
you have an internet connection, while you don’t, your chunks may not show at
all. If you encounter this problem, set manually offline=TRUE.

30 test.HO

show.solution.btn
If TRUE add a button to each chunk to show the sample solution. Note that one
can create a problem set such that the sample solution is never available. By
default TRUE if a sample solution is available in the problem set.

show. download. rmarkdown
If TRUE the user is able to download the R-Markdown file of their solution in
the submissions-tab. If FALSE the corresponding button is not rendered. By
default set to TRUE.

html.data.frame

shall data.frames and matrices be printed as html table if a chunk is checked?
(Default=TRUE)

table.max.rows the maximum number of rows that is shown if a data.frame is printed as html.table

round.digits the number of digits that printed data.frames shall be rounded to

stats Shows your progress

Description

Shows your progress

Usage

stats(
do.display = TRUE,
use.old.stats = FALSE,
ups = get.ups(),
ps = get.ps(),

rps = ps$rps
)
test.HO Helper function for custom test blocks. Check whether a certain null
hypothesis is not significantly rejected
Description

Helper function for custom test blocks. Check whether a certain null hypothesis is not significantly
rejected

test. HO.rejected 31

Usage

test.HO(
test.expr,
p.value,
test.name = "",
alpha.warning = 0.05,
alpha.failure = 0.001,
short.message,
warning.message,
failure.message,

success.message = "Great, I could not significantly reject the null hypothesis from the test '{{test_
check.warning = TRUE,

part = NULL,

ps = get.ps(),

stud.env = ps$stud.env,

)
Arguments
test.expr an expression that calls a test which will be evaluated in stud.env. The test must
return a list that contains a field "p.value"
p.value Instead of providing test.expr, one can directly provide a p.value from a previ-
ously run test
test.name an optional test.name that can be used to fill the test_name whiskers in warning

or failure messages.
alpha.warning default=0.05 a p.value below a warning is printed that the code may be wrong

alpha.failure default=0.001 the critical p.value below which the stud code is considered wrong
short.message, failure.messages

warning.messages Messages in case of a failure and warning and short message
for the log.file

check.warning if FALSE don’t check for a warning

Value

TRUE if HO cannot be rejected, FALSE if not and "warning" if it can be weakly rejected

test.HO.rejected Can be used in a custom test block. Checks whether a certain HO can
be significantly rejected

Description

Can be used in a custom test block. Checks whether a certain HO can be significantly rejected

32

Usage

test.HO.rejected(
test.expr,
p.value,
test.name = "",
alpha.warning =
alpha.failure
short.message =

warning.message
failure.message
success.message

check.warning =
ps = get.psQ),

test.HO.rejected

.01,

0.05,

"Fail to reject '{{test_name}}', p.value = {{p_value}}”,

= "The null hypothesis from the test '{{test_name}}', should not be rejcected, but I g

= "I couldn't significantly reject the null hypothesis from the test '{{test_name}}"'

= "Great, I could significantly reject the null hypothesis from the test '{{test_name
TRUE,

stud.env = ps$stud.env,

part = NULL,
)
Arguments

test.expr an expression that calls a test which will be evaluated in stud.env. The test must
return a list that contains a field "p.value"

p.value Instead of providing test.expr, one can directly provide a p.value from a previ-
ously run test

test.name an optional test.name that can be used to fill the test_name whiskers in warning

or failure messages.

alpha.warning default=0.05 a p.value below a warning is printed that the code may be wrong

alpha.failure default=0.001 the critical p.value below which the stud code is considered wrong

short.message, failure.messages

warning.messages Messages in case of a failure and warning and short message
for the log.file

check.warning if FALSE don’t check for a warning

Value

TRUE if HO can be rejected, FALSE if not and "warning" if it can be weakly rejected

true 33

true A robust implementation of isTRUE

Description

Returns FALSE if evaluation expr yields an error or is not TRUE.

Usage

true(expr, envir = parent.frame())

Details

Useful for customized hints were evaluating an expression may often cause errors, e.g. if a user did
not define a variable.

with.random.seed Calls a function with a specified random.seed

Description

Calls a function with a specified random.seed

Usage

S3 method for class 'random.seed'
with(expr, seed = 1234567890)

Arguments

expr the expression to be evaluated

seed the seed as integer

Index

add.failure, 3
add. success, 3
add.warning, 3
auto.hint, 4
auto.hint.else, 4
awards, 4

check.assign, 5

check.assign.with.multiple.sol, 6

check.call, 7
check.col, 8
check.expr, 9
check.file.exists, 10
check. function, 10
check.problem.set, 11
check.regression, 12
check.variable, 13
create.ps, 14

display, 17
get.ps, 17

hint, 17
hint.else, 17
hint.else.active, 18
hint.for.assign, 18
hint.for.call, 19
hint.for.compute, 19
hint.for.function, 20
hint.stud.assign, 20
hint.stud.call, 20
hint.stud.fun, 21
holds. true, 21

https://yihui.org/knitr/options/, 16

make.hint.report, 22
make.submission, 22

name.rmd. chunks, 23

read.yaml, 23

rtutor.app.skel, 24
rtutor.package.skel, 25
rtutor.skel.show.opts.string, 26
run.ps, 26

sc, 27
show. ps, 28
stats, 30

test.HOQ, 30
test.HO.rejected, 31
true, 33

with.random.seed, 33

	add.failure
	add.success
	add.warning
	auto.hint
	auto.hint.else
	awards
	check.assign
	check.assign.with.multiple.sol
	check.call
	check.col
	check.expr
	check.file.exists
	check.function
	check.problem.set
	check.regression
	check.variable
	create.ps
	display
	get.ps
	hint
	hint.else
	hint.else.active
	hint.for.assign
	hint.for.call
	hint.for.compute
	hint.for.function
	hint.stud.assign
	hint.stud.call
	hint.stud.fun
	holds.true
	make.hint.report
	make.submission
	name.rmd.chunks
	read.yaml
	rtutor.app.skel
	rtutor.package.skel
	rtutor.skel.show.opts.string
	run.ps
	sc
	show.ps
	stats
	test.H0
	test.H0.rejected
	true
	with.random.seed
	Index

