
Package: RelationalContracts (via r-universe)
September 22, 2024

Type Package

Title Characterize relational contracts in repated or stochastic games

Version 0.2.0

Author Sebastian Kranz

Maintainer Sebastian Kranz <sebastian.kranz@uni-ulm.de>

Description Characterize relational contracts in repated or stochastic
games. Can also analyse repeated negotiation equilibria.

License GPL >= 2.0

Encoding UTF-8

LazyData true

Depends restorepoint, dplyr, matrixStats,RelationalContractsCpp, tidyr

Suggests ggplot2, plotly,DiagrammeR

RoxygenNote 7.1.1

Repository https://skranz.r-universe.dev

RemoteUrl https://github.com/skranz/RelationalContracts

RemoteRef master

RemoteSha e29d080e8bfff5d9033f9b0f8b86ff5e002c6369

Contents
animate_capped_rne_history . 2
animate_eq_li . 3
compare_eq . 3
diagnose_transitions . 3
eq_combine_xgroup . 4
eq_diagram . 4
eq_diagram_xgroup . 6
get_eq . 7
get_repgames_results . 7
get_rne . 7
get_rne_details . 8

1

2 animate_capped_rne_history

get_spe . 8
get_T_rne_history . 8
irv . 9
irv_joint_dist . 9
irv_val . 9
plot_eq_payoff_set . 10
rel_after_cap_actions . 11
rel_after_cap_payoffs . 11
rel_capped_rne . 12
rel_change_param . 14
rel_compile . 14
rel_eq_as_discounted_sums . 15
rel_first_best . 15
rel_game . 16
rel_is_eq_rne . 16
rel_mpe . 16
rel_options . 17
rel_param . 17
rel_rne . 18
rel_scale_eq_payoffs . 19
rel_solve_repgames . 19
rel_spe . 20
rel_states . 21
rel_state_probs . 23
rel_transition . 24
rel_T_rne . 24

Index 27

animate_capped_rne_history

Use ggplotly to show an animation of the payoff sets of a capped RNE
going from t=T to t=1

Description

Use ggplotly to show an animation of the payoff sets of a capped RNE going from t=T to t=1

Usage

animate_capped_rne_history(
g,
x = gsdfx[1],
hist = g$eq.history,
colors = c("#377EB8", "#E41A1C", "#4DAF4A", "#984EA3", "#FF7F00", "#FFFF33",
"#A65628", "#F781BF"),

alpha = 0.4,
add.state.label = TRUE,

animate_eq_li 3

add.grid = FALSE,
add.diag = FALSE,
add.plot = NULL,
eq.li = NULL

)

animate_eq_li Use ggplotly to show an animation of the payoff sets of a list of equi-
libria

Description

Use ggplotly to show an animation of the payoff sets of a list of equilibria

Usage

animate_eq_li(g, eq.li, x = gsdfx[1], ...)

compare_eq Helper function to find differences between two equilibria

Description

Helper function to find differences between two equilibria

Usage

compare_eq(eq1, eq2 = g[["eq"]], g, verbose = TRUE)

diagnose_transitions Take a look at the computed transitions for each state using separate
data frames

Description

Take a look at the computed transitions for each state using separate data frames

Usage

diagnose_transitions(g)

4 eq_diagram

eq_combine_xgroup Aggregate equilibrium behavior in games with random active player

Description

Often it is useful to specify games such that players don’t move simultaneously but a random player
ap is chosen to be active in a given state.

Usage

eq_combine_xgroup(
g,
eq = g[["eq"]],
ap.col = ifelse(has.col(eq, "ap"), "ap", NA)

)

Arguments

g the game object

eq the equilibrium, by default the last solved eq of g.

ap.col the column as a character in x.df that is the index of the active player. By default
"ap".

Details

The active player in a state x is defined by the variable ap in x.df and the original state by xgroup.

This function aggregates equilibrium outcomes from x to xgroup. For payoffs r1,r2,v1,v2 and U we
take the mean over the payoffs given the two possible actvive players.

The columns move.adv1 and move.adv2 describe the difference in negotiation payoffs of a player
when is the active player who can make a move compared to the other player being active.

Finally we create action labels by combining the actions chosen when a player is active.

eq_diagram Draws a diagram of equilibrium state transition

Description

Draws an arrow from state x to state y if and only if on the equilibrium path there is a positive
probability to directly transist from x to y.

eq_diagram 5

Usage

eq_diagram(
g,
show.own.loop = FALSE,
show.terminal.loop = FALSE,
use.x = NULL,
just.eq.chain = FALSE,
x0 = gsdfx[1],
hide.passive.edge = TRUE,
label.fun = NULL,
tooltip.fun = NULL,
active.edge.color = "#000077",
passive.edge.color = "#dddddd",
add.passive.edge = TRUE,
passive.edge.width = 1,
return.dfs = FALSE,
eq = g[["eq"]],
font.size = 24,
font = paste0(font.size, "px Arial black")

)

Arguments

g The solved game object

show.own.loop Shall a loop from a state to itself be drawn if there is a positive probability to
stay in the state? (Default=FALSE)

show.terminal.loop

Only relevant if show.own.loop = TRUE. If still show.terminal.loop=FALSE
omit loops in terminal state that don’t transist to any other state.

use.x optionally a vector of state ids that shall only be shown.

just.eq.chain If TRUE only show states that can be reached with positive probability on the
equilibrium path when starting from state x0.

x0 only relevant if just.eq.chain=TRUE. The ID of the x0 state. By default the
first defined state.

label.fun An optional function that takes the equilibrium object and game and returns a
character vector that contains a label for each state.

tooltip.fun Similar to label.fun but for the tooltip shown on a state.

return.dfs if TRUE don’t show diagram but only return the relevant edge and node data
frames that can be used to call DiagrammeR::create_graph. Useful if you
want to manually customize graphs further.

font.size The font size

6 eq_diagram_xgroup

eq_diagram_xgroup Draws a diagram of equilibrium state transition

Description

Draws an arrow from state x to state y if and only if on the equilibrium path there is a positive
probability to directly transist from x to y.

Usage

eq_diagram_xgroup(
g,
show.own.loop = FALSE,
show.terminal.loop = FALSE,
use.x = NULL,
just.eq.chain = FALSE,
x0 = gsdfx[1],
hide.passive.edge = TRUE,
add.passive.edge = TRUE,
label.fun = NULL,
tooltip.fun = NULL,
active.edge.color = "#000077",
passive.edge.color = "#dddddd",
passive.edge.width = 1,
return.dfs = FALSE,
eq = g[["eq"]],
ap.col = if (has.col(eq, "ap")) "ap" else NA,
font.size = 24,
font = paste0(font.size, "px Arial black")

)

Arguments

g The solved game object

show.own.loop Shall a loop from a state to itself be drawn if there is a positive probability to
stay in the state? (Default=FALSE)

show.terminal.loop

Only relevant if show.own.loop = TRUE. If still show.terminal.loop=FALSE
omit loops in terminal state that don’t transist to any other state.

use.x optionally a vector of state ids that shall only be shown.

just.eq.chain If TRUE only show states that can be reached with positive probability on the
equilibrium path when starting from state x0.

x0 only relevant if just.eq.chain=TRUE. The ID of the x0 state. By default the
first defined state.

label.fun An optional function that takes the equilibrium object and game and returns a
character vector that contains a label for each state.

get_eq 7

tooltip.fun Similar to label.fun but for the tooltip shown on a state.

return.dfs if TRUE don’t show diagram but only return the relevant edge and node data
frames that can be used to call DiagrammeR::create_graph. Useful if you
want to manually customize graphs further.

get_eq Get the last computed equilibrium of game g

Description

Get the last computed equilibrium of game g

Usage

get_eq(g, extra.cols = "ae", eq = g[["eq"]], add.vr = FALSE)

get_repgames_results Get the results of all solved repeated games assuming the state is fixed

Description

Returns for all discount factors the optimal simple strategy profiles maximum joint payoffs and
punishment profiles

Usage

get_repgames_results(
g,
action.details = TRUE,
delta = g$param$delta,
rho = g$param$rho

)

get_rne Get the last computed RNE of game g

Description

Get the last computed RNE of game g

Usage

get_rne(g, extra.cols = "ae", eq = g[["rne"]])

8 get_T_rne_history

get_rne_details Retrieve more details about the last computed RNE

Description

Retrieve more details about the last computed RNE

Usage

get_rne_details(g, x = NULL)

get_spe Get the last computed SPE of game g

Description

Get the last computed SPE of game g

Usage

get_spe(g, extra.cols = "ae", eq = g[["spe"]])

get_T_rne_history Get the intermediate steps in from t = T to t = 1 for a T-RNE or capped
RNE that has been solved with save.history = TRUE

Description

Get the intermediate steps in from t = T to t = 1 for a T-RNE or capped RNE that has been solved
with save.history = TRUE

Usage

get_T_rne_history(g)

irv 9

irv Helper functions to specify state transitions

Description

To be used as argument of irv_joint_dist

Usage

irv(var, ..., default = NULL, lower = NULL, upper = NULL, vals.unique = TRUE)

Details

See vignette for examples

irv_joint_dist Helper function to specify state transitions

Description

See vignette for examples

Usage

irv_joint_dist(
df,
...,
enclos = parent.frame(),
remove.zero.prob = TRUE,
prob.var = "prob"

)

irv_val Helper functions to specify state transitions

Description

To be used as argument of irv

Usage

irv_val(val, prob)

Details

See vignette for examples

10 plot_eq_payoff_set

plot_eq_payoff_set Show a base R plot of equilibrium payoff set

Description

Show a base R plot of equilibrium payoff set

Usage

plot_eq_payoff_set(
g,
x = eq$x[1],
t = 1,
eq = if (use.vr) get_eq(g, add.vr = TRUE) else g[["eq"]],
xlim = NULL,
ylim = NULL,
add = FALSE,
plot.r = TRUE,
alpha = 0.8,
black.border = TRUE,
add.state.label = is.null(labels),
labels = NULL,
colors = c("#377EB8", "#E41A1C", "#4DAF4A", "#984EA3", "#FF7F00", "#FFFF33",
"#A65628", "#F781BF"),

add.xlim = NULL,
add.ylim = NULL,
extend.lim.perc = 0.05,
use.vr = FALSE,
...

)

Arguments

g The game object for which an equilibrium has been solved

x A character vector of the state(s) for which the (continuation) equilibrium payoff
set shall be shown. By default only the first stage.

eq An equilibrium object. By default the last solved equilibrium.

xlim as in plot.default

ylim as in plot.default

add as in plot.default Setting add=FALSE can be useful to compare payoff sets of
different games.

plot.r Shall negotiation payoffs be shown as a point on the Pareto-frontier (default =
TRUE)

alpha opacity of the fill color

rel_after_cap_actions 11

rel_after_cap_actions Fix action profiles for the equilibrium path (ae) and during punishment
(a1.hat and a2.hat) that are assumed to be played after the cap in
period T onwards. The punishment profile a1.hat is the profile in which
player 1 already plays a best-reply (in a1 he might play a non-best
reply). From the specified action profiles in all states, we can compute
the relevant after-cap payoffs U(x), v1(x) and v2(x) assuming that state
transitions would continue.

Description

Fix action profiles for the equilibrium path (ae) and during punishment (a1.hat and a2.hat) that
are assumed to be played after the cap in period T onwards. The punishment profile a1.hat is the
profile in which player 1 already plays a best-reply (in a1 he might play a non-best reply). From the
specified action profiles in all states, we can compute the relevant after-cap payoffs U(x), v1(x) and
v2(x) assuming that state transitions would continue.

Usage

rel_after_cap_actions(g, x = NA, ae, a1.hat, a2.hat, x.T = NA)

Arguments

g a relational contracting game created with rel_game

x The state(s) for which this after-cap payoff set is applied. If NA (default) and
also x.T is NA, it applies to all states.

ae A named list that specifies the equilibrum action profiles.

a1.hat A named list that specifies the action profile when player 1 is punished.

a2.hat A named list that specifies the action profile when player 2 is punished.

x.T Instead of specifiying the argument x, we can specify as x.T a name of the after-
cap state. This can be refereed to as the argument x.T in rel_state and rel_states

Value

Returns the updated game

rel_after_cap_payoffs Specify the SPE payoff set(s) of the truncated game(s) after a cap in
period T. While we could specify a complete repeated game that is
played after the cap, it also suffices to specify just an SPE payoff set of
the truncated game of the after-cap state.

12 rel_capped_rne

Description

Specify the SPE payoff set(s) of the truncated game(s) after a cap in period T. While we could
specify a complete repeated game that is played after the cap, it also suffices to specify just an SPE
payoff set of the truncated game of the after-cap state.

Usage

rel_after_cap_payoffs(
g,
x = NA,
U,
v1 = NA,
v2 = NA,
v1.rep = NA,
v2.rep = NA,
x.T = NA

)

Arguments

g a relational contracting game created with rel_game
x The state(s) for which this after-cap payoff set is applied. If NA (default) and

also x.T is NA, it applies to all states.
U The highest joint payoff in the truncated repeated game starting from period T.
v1 The lowest SPE payoff of player 1 in the truncated game. These are average

discounted payoffs using delta as discount factor.
v2 Like v1, but for player 2.
v1.rep Alternative to v1. Player 1 lowest SPE payoff in the repeated game with adjusted

discount factor delta*(1-rho). Will be automatically converted into v1_trunc
based on rho, delta, and bargaining weight. Are often easier to specify.

v2.rep Like v1.rep, but for player 2.
x.T Instead of specifiying the argument x, we can specify as x.T a name of the after-

cap state. This can be refereed to as the argument x.T in rel_state and rel_states

Value

Returns the updated game

rel_capped_rne Solve an RNE for a capped version of a game

Description

In a capped version of the game we assume that after period T the state cannot change anymore and
always stays the same. I.e. after T periods players play a repeated game. For a given T a capped
game has a unique RNE payoff. Also see rel_T_rne.

rel_capped_rne 13

Usage

rel_capped_rne(
g,
T,
delta = g$param$delta,
rho = g$param$rho,
adjusted.delta = NULL,
beta1 = g$param$beta1,
tie.breaking = c("equal_r", "slack", "random", "first", "last", "max_r1", "max_r2",

"unequal_r")[1],
tol = 1e-12,
add.iterations = FALSE,
save.details = FALSE,
save.history = FALSE,
use.cpp = TRUE,
T.rne = FALSE,
spe = NULL,
res.field = "eq"

)

Arguments

g The game

T The number of periods in which new negotiations can take place.

delta the discount factor

rho the negotiation probability

adjusted.delta the adjusted discount factor (1-rho)*delta. Can be specified instead of delta.

beta1 the bargaining weight of player 1. By default equal to 0.5. Can also be initially
specified with rel_param.

tie.breaking A tie breaking rule when multiple action profiles could be implemented on the
equilibrium path with same joint payoff U. Can take the following values:

• "equal_r" (DEFAULT) prefer actions that in expectation move to states with
more equal negotiation payoffs.

• "slack" prefer the action profile with the highest slack in the incentive con-
straints

• "random" pick randomly from all eligible action profiles
• "max_r1" pick action profiles that in moves to states with highest negotia-

tion payoff for player 1.
• "max_r2" pick action profiles that in moves to states with highest negotia-

tion payoff for player 2.

tol Due to numerical inaccuracies the calculated incentive constraints for some ac-
tion profiles may be vialoated even though with exact computation they should
hold, yielding unexpected results. We therefore also allow action profiles whose
numeric incentive constraints is violated by not more than tol. By default we
have tol=1e-10.

14 rel_compile

add.iterations if TRUE just add T iterations to the previously computed capped RNE or T-
RNE.

save.details if set TRUE details of the equilibrium are saved that can be analysed later by
calling get_rne_details. For an example, see the vignette for the Arms Race
game.

save.history saves the values for intermediate T.

rel_change_param Add parameters to a relational contracting game

Description

Add parameters to a relational contracting game

Usage

rel_change_param(g, ...)

Arguments

g a relational contracting game created with rel_game

... other parameters that can e.g. be used in payoff functions

delta The discount factor

rho The negotiation probability

Value

Returns the updated game

rel_compile Compiles a relational contracting game

Description

Compiles a relational contracting game

Usage

rel_compile(g, ..., compute.just.static = FALSE)

rel_eq_as_discounted_sums 15

rel_eq_as_discounted_sums

Translate equilibrium payoffs as discounted sum of payoffs

Description

By default equilibrium payoffs are given as average discounted payoffs. This is the discounted sum
of payoffs multiplied by (1-delta).

Usage

rel_eq_as_discounted_sums(g)

Details

Call this function after you have solved an equilibrium if you want to present the equilibrium

@param g the game for which an equilibrium was computedayoffs as the discounted sum of payoffs
instead.

rel_first_best Compute first-best.

Description

We compute the "equilibrium" play that would maximize joint payoffs if incentive constraints could
be completely ignored.

Usage

rel_first_best(g, delta = g$param$delta, ...)

Arguments

g the game object

delta The discount factor

... additional parameters of rel_spe

Details

Note that we create the same columns as for a spe, e.g. punishment payoffs v1 and v2 that would
arise if every action profile could be implemented as punishment. This allows to use the same
functions, like eq_diagram as for equilibria.

16 rel_mpe

rel_game Creates a new relational contracting game

Description

Creates a new relational contracting game

Usage

rel_game(name = "Game", ..., enclos = parent.frame())

rel_is_eq_rne Checks if an equilibrium eq with negotiation payoffs is an RNE

Description

We simply solve the truncated game with r1 and r2 and check whether the resultig r1 and r2 are the
same

Usage

rel_is_eq_rne(
g,
eq = g[["eq"]],
r1 = eq$r1,
r2 = eq$r2,
r.tol = 1e-10,
verbose = TRUE

)

rel_mpe Tries to find a MPE by computing iteratively best replies

Description

Returns a game object that contains the mpe. Use the function get_mpe to retrieve a data frame that
describes the MPE.

rel_options 17

Usage

rel_mpe(
g,
delta = g$param$delta,
static.eq = NULL,
max.iter = 100,
tol = 1e-08,
a.init.guess = NULL

)

Arguments

g the game

delta the discount factor

max.iter maximum number of iterations

tol we finish if payoffs in a subsequent iteration don’t change by more than tol

a.init.guess optionaly an initially guess of the action profiles. A vector of size nx (number
of states) that describes for each state the integer index of the action profile. For
a game g look at ‘g$ax.grid‘ to find the indeces of the desired action profiles.

rel_options Set some game options

Description

Set some game options

Usage

rel_options(g, lab.action.sep = " ", lab.player.sep = " | ")

rel_param Add parameters to a relational contracting game

Description

Add parameters to a relational contracting game

18 rel_rne

Usage

rel_param(
g,
...,
delta = non.null(param[["delta"]], 0.9),
rho = non.null(param[["rho"]], 0),
beta1 = non.null(param[["beta1"]], 1/2),
param = g[["param"]]

)

Arguments

g a relational contracting game created with rel_game

... other parameters that can e.g. be used in payoff functions

delta The discount factor

rho The negotiation probability

Value

Returns the updated game

rel_rne Find an RNE for a (weakly) directional game

Description

If the game is strongly directional, i.e. non-terminal states will be reached at most once, there exists
a unique RNE payoff.

Usage

rel_rne(
g,
delta = g$param$delta,
rho = g$param$rho,
adjusted.delta = NULL,
beta1 = g$param$beta1,
verbose = TRUE,
...

)

rel_scale_eq_payoffs 19

Arguments

g The game object

delta the discount factor

rho the negotiation probability

adjusted.delta the adjusted discount factor (1-rho)*delta. Can be specified instead of delta.

beta1 the bargaining weight of player 1. By default equal to 0.5. Can also be initially
specified with rel_param.

verbose if TRUE give more detailed information over the solution process.

Details

For weakly directional games no RNE or multiple RNE payoffs may exist.

You can call rel_capped_rne to solve a capped version of the game that allows state changes only
up to some period T. Such a capped version always has a unique RNE payoff.

rel_scale_eq_payoffs Scale equilibrium payoffs

Description

Scale equilibrium payoffs

Usage

rel_scale_eq_payoffs(g, factor)

Arguments

g the game for which an equilibrium was computed

factor the factor by which the payoffs U,v1,v2,r1 and r2 are multiplied

rel_solve_repgames Solves for all specified states the repeated game assuming the state is
fixed

Description

Solves for all specified states the repeated game assuming the state is fixed

20 rel_spe

Usage

rel_solve_repgames(
g,
x = gsdfx,
overwrite = FALSE,
rows = match(x, gsdfx),
use.repgame.package = FALSE

)

Value

Returns a game object that contains a field ’rep.games.df’. This data frame contains the relevant
information to compute equilibrium payoffs and equilibria for all discount factors for all states.

rel_spe Finds an optimal simple subgame perfect equilibrium of g. From this
the whole SPE payoff set can be deduced.

Description

Finds an optimal simple subgame perfect equilibrium of g. From this the whole SPE payoff set can
be deduced.

Usage

rel_spe(
g,
delta = g$param$delta,
tol.feasible = 1e-10,
no.exist.action = c("warn", "stop", "nothing"),
verbose = FALSE,
r1 = NULL,
r2 = NULL,
rho = g$param$rho,
add.action.labels = TRUE,
max.iter = 10000,
first.best = FALSE

)

Arguments

g the game object

delta The discount factor. By default the discount factor specified in g.

tol.feasible Due to numerical inaccuracies, sometimes incentive constraints which theoreti-
cally should exactly hold, seem to be violated. To avoid this problem, we will
consider all action profiles feasible whose incentive constraint is not violated by

rel_states 21

more then tol.feasible. This means we compute epsilon equilibria in which
tol.feasible is the epsilon.

no.exist.action

What shall be done if no pure SPE exists? Default is no.exist.action =
"warning", alternatives are no.exist.action = "error" or no.exist.action
= "nothing".

verbose if TRUE give more detailed information over the solution process.

r1 (or r2) if not NULL we want to find a SPE in a truncated game. Then r1 and r2
need to specify for each state the exogenously fixed negotiation payoffs.

rho Only relevant if r1 and r2 are not null. In that case the negotiation probability.

rel_states Add one or multiple states. Allows to specify action spaces, payoffs
and state transitions via functions

Description

Add one or multiple states. Allows to specify action spaces, payoffs and state transitions via func-
tions

Usage

rel_states(
g,
x,
A1 = NULL,
A2 = NULL,
pi1,
pi2,
A.fun = NULL,
pi.fun = NULL,
trans.fun = NULL,
static.A1 = NULL,
static.A2 = NULL,
static.A.fun = NULL,
static.pi1,
static.pi2,
static.pi.fun = NULL,
x.T = NULL,
pi1.form,
pi2.form,
...

)

rel_state(
g,

22 rel_states

x,
A1 = NULL,
A2 = NULL,
pi1,
pi2,
A.fun = NULL,
pi.fun = NULL,
trans.fun = NULL,
static.A1 = NULL,
static.A2 = NULL,
static.A.fun = NULL,
static.pi1,
static.pi2,
static.pi.fun = NULL,
x.T = NULL,
pi1.form,
pi2.form,
...

)

Arguments

g a relational contracting game created with rel_game
x The names of the states
A1 The action set of player 1. A named list, like A1=list(e1=1:10), where each

element is a numeric or character vector.
A2 The action set of player 2. See A1.
pi1 Player 1’s payoff. (Non standard evaluation)
pi2 Player 2’s payoff. (Non standard evaluation)
A.fun Alternative to specify A1 and A2, a function that returns action sets.
pi.fun Alternative to specify pi1 and pi2 as formula. A vectorized function that returns

payoffs directly for all combinations of states and action profiles.
trans.fun A function that specifies state transitions
x.T Relevant when solving a capped game. Which terminal state shall be set in

period T onwards. By default, we stay in state x.
pi1.form Player 1’s payoff as formula with standard evaluation
pi2.form Player 2’s payoff as formula with standard evaluation

Value

Returns the updated game

Functions

• rel_state: rel_state is just a synonym for the rel_states. You may want to use it if you specify
just a single state.

rel_state_probs 23

rel_state_probs Compute the long run probability distribution over states if an equi-
librium is played for many periods.

Description

Adds a column state.prob to the computed equilibrium data frame, which you can retrieve by
calling get_eq.

Usage

rel_state_probs(
g,
x0 = c("equal", "first", "first.group")[1],
start.prob = NULL,
n.burn.in = 100,
n.averaging = 100,
tol = 1e-13,
eq.field = "eq"

)

Arguments

g the game object for which an equilibrium has been solved

x0 the initial state, by default the first state. If initial is not specified we ass-
sume the game starts with probability 1 in the initial state. We have 3 reserved
keywords: x0="equal" means all states are equally likely, x0="first" means
the game starts in the first state, x0="first.group" means all states of the first
xgroup are equally likely.

start.prob an optional vector of probabilities that specifies for each state the probability
that the game starts in that state. Overwrites "x0" unless kept NULL.

n.burn.in Number of rounds before probabilities are averaged.

n.averaging Number of rounds for which probabilities are averaged.

tol Tolerance such that computation stops already in burn-in phase if transition
probabilities change not by more than tol.

Details

If the equilibrium strategy induces a unique stationary distribution over the states, this distribu-
tion should typically be found (or at least approximated). Otherwise the result can depend on the
parameters.

The initial distribution of states is determined by the parameters x0 or start.prob. We then multi-
ply the current probabilities susequently n.burn.in times with the transitition matrix on the equi-
librium path. This yields the probability distribution over states assuming the game is played for
n.burn.in periods.

24 rel_T_rne

We then continue the process for n.averaging rounds, and return the mean of the state probability
vectors over these number of rounds.

If between two rounds in the burn-in phase the transitition probabilities of no state pair change by
more than the parameter tol, we immediately stop and use the resulting probabilit vector.

Note that for T-RNE or capped RNE we always take the transition probabilities of the first period,
i.e. we don’t increase the t in the actual state definition.

rel_transition Add a state transition from one state to one or several states. For more
complex games, it may be preferable to use the arguments trans.fun
of link{rel_states} instead.

Description

Add a state transition from one state to one or several states. For more complex games, it may be
preferable to use the arguments trans.fun of link{rel_states} instead.

Usage

rel_transition(g, xs, xd, ..., prob = 1)

Arguments

g a relational contracting game created with rel_game

xs Name(s) of source states

xd Name(s) of destination states

... named action and their values

prob transition probability

Value

Returns the updated game

rel_T_rne Compute a T-RNE

Description

The idea of a T-RNE is that only for a finite number of T periods relational contracts will be newly
negoatiated. After T periods no new negotiations take place, i.e. every SPE continuation payoff can
be implemented. For fixed T there is a unique RNE payoff.

rel_T_rne 25

Usage

rel_T_rne(
g,
T,
delta = g$param$delta,
rho = g$param$rho,
adjusted.delta = NULL,
beta1 = g$param$beta1,
tie.breaking = c("equal_r", "slack", "random", "first", "last", "max_r1", "max_r2",

"unequal_r")[1],
tol = 1e-12,
save.details = FALSE,
add.iterations = FALSE,
save.history = FALSE,
use.cpp = TRUE,
spe = g[["spe"]],
res.field = "eq"

)

Arguments

g The game

T The number of periods in which new negotiations can take place.

delta the discount factor

rho the negotiation probability

adjusted.delta the adjusted discount factor (1-rho)*delta. Can be specified instead of delta.

beta1 the bargaining weight of player 1. By default equal to 0.5. Can also be initially
specified with rel_param.

tie.breaking A tie breaking rule when multiple action profiles could be implemented on the
equilibrium path with same joint payoff U. Can take the following values:

• "equal_r" (DEFAULT) prefer actions that in expectation move to states with
more equal negotiation payoffs.

• "slack" prefer the action profile with the highest slack in the incentive con-
straints

• "random" pick randomly from all eligible action profiles
• "max_r1" pick action profiles that in moves to states with highest negotia-

tion payoff for player 1.
• "max_r2" pick action profiles that in moves to states with highest negotia-

tion payoff for player 2.

tol Due to numerical inaccuracies the calculated incentive constraints for some ac-
tion profiles may be vialoated even though with exact computation they should
hold, yielding unexpected results. We therefore also allow action profiles whose
numeric incentive constraints is violated by not more than tol. By default we
have tol=1e-10.

26 rel_T_rne

save.details if set TRUE details of the equilibrium are saved that can be analysed later by
calling get_rne_details. For an example, see the vignette for the Arms Race
game.

add.iterations if TRUE just add T iterations to the previously computed capped RNE or T-
RNE.

save.history saves the values for intermediate T.

Index

animate_capped_rne_history, 2
animate_eq_li, 3

compare_eq, 3

diagnose_transitions, 3

eq_combine_xgroup, 4
eq_diagram, 4
eq_diagram_xgroup, 6

get_eq, 7
get_repgames_results, 7
get_rne, 7
get_rne_details, 8
get_spe, 8
get_T_rne_history, 8

irv, 9, 9
irv_joint_dist, 9, 9
irv_val, 9

plot.default, 10
plot_eq_payoff_set, 10

rel_after_cap_actions, 11
rel_after_cap_payoffs, 11
rel_capped_rne, 12
rel_change_param, 14
rel_compile, 14
rel_eq_as_discounted_sums, 15
rel_first_best, 15
rel_game, 16
rel_is_eq_rne, 16
rel_mpe, 16
rel_options, 17
rel_param, 17
rel_rne, 18
rel_scale_eq_payoffs, 19
rel_solve_repgames, 19
rel_spe, 15, 20

rel_state (rel_states), 21
rel_state_probs, 23
rel_states, 21
rel_T_rne, 12, 24
rel_transition, 24

27

	animate_capped_rne_history
	animate_eq_li
	compare_eq
	diagnose_transitions
	eq_combine_xgroup
	eq_diagram
	eq_diagram_xgroup
	get_eq
	get_repgames_results
	get_rne
	get_rne_details
	get_spe
	get_T_rne_history
	irv
	irv_joint_dist
	irv_val
	plot_eq_payoff_set
	rel_after_cap_actions
	rel_after_cap_payoffs
	rel_capped_rne
	rel_change_param
	rel_compile
	rel_eq_as_discounted_sums
	rel_first_best
	rel_game
	rel_is_eq_rne
	rel_mpe
	rel_options
	rel_param
	rel_rne
	rel_scale_eq_payoffs
	rel_solve_repgames
	rel_spe
	rel_states
	rel_state_probs
	rel_transition
	rel_T_rne
	Index

